Ukuhlinzeka ngemithombo kagesi esimeme kungenye yezinselelo ezibaluleke kakhulu zaleli khulu leminyaka. Izindawo zocwaningo ezintweni zokuvuna amandla zisukela kulokhu kugqugquzela, okuhlanganisa i-thermoelectric1, i-photovoltaic2 kanye ne-thermophotovoltaics3. Nakuba sintula izinto ezisetshenziswayo namadivayisi akwazi ukuvuna amandla ebangeni le-Joule, izinto ezisetshenziswa yi-pyroelectric ezingaguqula amandla kagesi zibe izinguquko zokushisa ngezikhathi ezithile zibhekwa njengezinzwa4 nezivuni zamandla5,6,7. Lapha sithuthukise isivuni samandla ashisayo esimakhroscopic ngendlela ye-multilayer capacitor eyenziwe ngamagremu angu-42 we-lead scandium tantalate, ekhiqiza u-11.2 J wamandla kagesi ngomjikelezo we-thermodynamic ngamunye. Imojula ngayinye ye-pyroelectric ingakhiqiza ukuminyana kwamandla kagesi kuze kufike ku-4.43 J cm-3 ngomjikelezo ngamunye. Siphinde sibonisa ukuthi amamojula amabili anjalo anesisindo esingu-0.3 g anele ukunika amandla ngokuqhubekayo izivuni zamandla ezizimele ngezilawuli ezincane ezishumekiwe nezinzwa zokushisa. Okokugcina, sibonisa ukuthi ngebanga lokushisa elingu-10 K, lawa ma-capacitor amaningi angafinyelela ku-40% ukusebenza kahle kwe-Carnot. Lezi zakhiwo zibangelwa (1) ukuguqulwa kwesigaba se-ferroelectric ukusebenza kahle okuphezulu, (2) ukuvuza okuphansi kwamanje ukuze kuvinjwe ukulahlekelwa, kanye (3) ne-voltage ephezulu yokuphuka. Lezi zivuni zamandla kagesi we-pyroelectric macroscopic, scalable futhi zisebenza kahle zicabanga kabusha ukukhiqizwa kwamandla kagesi we-thermoelectric.
Uma kuqhathaniswa ne-gradient yezinga lokushisa elidingekayo ezintweni ezisebenza ngogesi oshisayo, ukuvunwa kwamandla ezinto ezisetshenziswayo zikagesi we-thermoelectric kudinga ukuhamba ngebhayisikili kwezinga lokushisa ngokuhamba kwesikhathi. Lokhu kusho umjikelezo we-thermodynamic, ochazwa kangcono umdwebo we-entropy (S)-temperature (T). Umfanekiso 1a ubonisa isakhiwo se-ST esijwayelekile sezinto ezibonakalayo ze-pyroelectric (NLP) ezibonisa inguquko yesigaba se-ferroelectric-paraelectric eqhutshwa ensimini ku-scandium lead tantalate (PST). Izingxenye eziluhlaza okwesibhakabhaka neziluhlaza zomjikelezo kumdwebo we-ST zihambisana namandla kagesi aguquliwe kumjikelezo we-Olson (izingxenye ezimbili ze-isothermal nezimbili ze-isopole). Lapha sicabangela imijikelezo emibili enokushintsha okufanayo kwenkambu kagesi (inkambu ivuliwe futhi ivaliwe) kanye noshintsho lokushisa ΔT, nakuba amazinga okushisa okuqala ahlukene. Umjikelezo oluhlaza awutholakali endaweni yenguquko yesigaba futhi ngaleyo ndlela unendawo encane kakhulu kunomjikelezo oluhlaza okwesibhakabhaka otholakala esifundeni soguquko lwesigaba. Emdwebeni we-ST, indawo enkulu, amandla amakhulu aqoqiwe. Ngakho-ke, ukuguqulwa kwesigaba kumele kuqoqe amandla amaningi. Isidingo sokuhamba ngebhayisikili endaweni enkulu ku-NLP sifana kakhulu nesidingo se-electrothermal applications9, 10, 11, 12 lapho i-PST multilayer capacitor (MLCs) kanye nama-terpolymers asekelwe ku-PVDF asanda kukhombisa ukusebenza okuhle kakhulu kokuhlehla. ukupholisa isimo sokusebenza kumjikelezo 13,14,15,16. Ngakho-ke, sihlonze ama-PST MLC anentshisekelo ekuvuneni amandla ashisayo. Lawa masampuli achazwe ngokugcwele ezindleleni futhi aphawulwe kumanothi engeziwe 1 (ukuskena i-electron microscopy), 2 (i-X-ray diffraction) kanye no-3 (i-calorimetry).
a, Umdwebo wesakhiwo se-entropy (S)-temperature (T) enenkambu kagesi evuliwe futhi evaliwe esetshenziswa ezintweni ze-NLP ezibonisa izinguquko zesigaba. Imijikelezo emibili yokuqoqwa kwamandla iboniswa ezindaweni ezimbili zokushisa ezihlukene. Imijikelezo eluhlaza okwesibhakabhaka nohlaza yenzeka ngaphakathi nangaphandle kwenguquko yesigaba, ngokulandelana, futhi igcina ezifundeni ezihluke kakhulu endaweni. b, izindandatho ezimbili ze-DE PST MLC ze-unipolar, ubukhulu obungu-1 mm, zikalwa phakathi kuka-0 no-155 kV cm-1 ku-20 °C no-90 °C, ngokulandelana, kanye nemijikelezo ye-Olsen ehambisanayo. Izinhlamvu ze-ABCD zibhekisela ezifundeni ezahlukene kumjikelezo we-Olson. AB: Ama-MLC ashajwe ku-155 kV cm-1 ku-20°C. BC: I-MLC yayinakekelwa ku-155 kV cm-1 futhi izinga lokushisa lakhushulelwa ku-90 °C. I-CD: I-MLC iphuma ku-90°C. I-DA: I-MLC igodole yaya ku-20°C endaweni eyiziro. Indawo eluhlaza okwesibhakabhaka ihambisana namandla okufaka adingekayo ukuze kuqalwe umjikelezo. Indawo ewolintshi amandla aqoqwe ngomjikelezo owodwa. c, iphaneli ephezulu, i-voltage (emnyama) neyamanje (ebomvu) uma iqhathaniswa nesikhathi, ilandelelwa phakathi nomjikelezo we-Olson ofana nowe-b. Lezi zinto ezimbili ezifakiwe zimelela ukukhuliswa kwe-voltage kanye namanje ezindaweni ezibalulekile emjikelezweni. Kuphaneli engezansi, amajika aphuzi naluhlaza amele izinga lokushisa elihambisanayo namajika wamandla, ngokulandelana, ku-MLC engu-1 mm obukhulu. Amandla abalwa kusukela kumajika amanje nawe-voltage kuphaneli ephezulu. Amandla angalungile ahambisana namandla aqoqiwe. Izinyathelo ezihambisana nosonhlamvukazi ezibalweni ezine ziyafana nezasemjikelezweni wakwa-Olson. Umjikelezo we-AB'CD uhambisana nomjikelezo we-Stirling (inothi elengeziwe 7).
lapho u-E no-D kuyinkundla kagesi kanye nenkundla yokufuduka kagesi, ngokulandelana. I-Nd ingatholakala ngokungaqondile kumjikelezo we-DE (Fig. 1b) noma ngokuqondile ngokuqala umjikelezo we-thermodynamic. Izindlela eziwusizo kakhulu zachazwa ngu-Olsen emsebenzini wakhe wokuphayona wokuqoqa amandla e-pyroelectric ngawo-1980s17.
Emkhiwaneni. I-1b ibonisa amalophu e-DE e-monopolar amabili angu-1 mm awugqinsi we-PST-MLC amasampula ahlanganiswe ku-20 °C naku-90 °C, ngokulandelanayo, ebangeni lika-0 kuya ku-155 kV cm-1 (600 V). Le mijikelezo emibili ingasetshenziswa ukubala ngokungaqondile amandla aqoqwe umjikelezo we-Olson oboniswe kuMfanekiso 1a. Eqinisweni, umjikelezo we-Olsen uqukethe amagatsha amabili e-isofield (lapha, insimu enguziro egatsheni le-DA kanye ne-155 kV cm-1 egatsheni le-BC) kanye namagatsha amabili e-isothermal (lapha, 20 ° С no-20 ° С egatsheni le-AB) . C egatsheni le-CD) Amandla aqoqwe phakathi nomjikelezo ahambisana nezifunda eziwolintshi neziluhlaza okwesibhakabhaka (i-EdD ebalulekile). Amandla aqoqiwe Nd umehluko phakathi kwamandla okufaka nawokukhiphayo, okungukuthi indawo ewolintshi kuphela emkhiwaneni. 1b. Lo mjikelezo we-Olson unikeza ukuminyana kwamandla ka-Nd okungu-1.78 J cm-3. Umjikelezo we-Stirling ungenye indlela yomjikelezo we-Olson (Inothi Lokwengeza 7). Ngenxa yokuthi isigaba sokushaja esiqhubekayo (isifunda esivulekile) sifinyelelwa kalula, ukuminyana kwamandla akhishwe ku-Fig. 1b (umjikelezo we-AB'CD) kufinyelela ku-1.25 J cm-3. Lokhu kungamaphesenti angama-70 kuphela okungaqoqwa umjikelezo wakwa-Olson, kodwa izinto zokuvuna ezilula ziyakwenza.
Ngaphezu kwalokho, silinganise ngokuqondile amandla aqoqwe phakathi nomjikelezo we-Olson ngokunika amandla i-PST MLC sisebenzisa isigaba sokulawula izinga lokushisa se-Linkam kanye nemitha yomthombo (indlela). Umfanekiso 1c phezulu nakumasetha alandelayo ubonisa yamanje (ebomvu) kanye ne-voltage (emnyama) eqoqwe ku-PST MLC engu-1 mm yogqinsi kanye neluphu ye-DE edlula kumjikelezo we-Olson ofanayo. I-current kanye ne-voltage yenza kube lula ukubala amandla aqoqiwe, futhi ama-curve aboniswa kumfanekiso. 1c, phansi (okuluhlaza) kanye nezinga lokushisa (okuphuzi) kuwo wonke umjikelezo. Izinhlamvu ze-ABCD zimelela umjikelezo we-Olson ofanayo ku-Fig. 1. Ukushaja kwe-MLC kwenzeka phakathi nomlenze we-AB futhi kwenziwa ngesivinini esiphansi (200 µA), ngakho i-SourceMeter ingakwazi ukulawula ukushaja ngendlela efanele. Umphumela walokhu kwamanje kokuqala okungaguquki ukuthi ijika le-voltage (ijika elimnyama) alikona umugqa ngenxa yenkambu engase ibe khona engase ibe khona yokufuduka D PST (Fig. 1c, inset top). Ekupheleni kokushaja, u-30 mJ wamandla kagesi ugcinwa ku-MLC (iphuzu B). I-MLC bese ishisa futhi i-current negative (ngakho-ke i-current negative) ikhiqizwa ngenkathi i-voltage ihlala ku-600 V. Ngemva kwe-40 s, lapho izinga lokushisa lifinyelela endaweni ephakeme ye-90 ° C, lokhu okwamanje kwanxeshezelwa, nakuba isampula yesinyathelo ikhiqize kumjikelezo amandla kagesi we-35 mJ phakathi nalesi isofield (i-second inset ku-Fig. 1c, phezulu). Amandla kagesi ku-MLC (i-CD yegatsha) abe esencishiswa, okuholela kumsebenzi kagesi owengeziwe ongu-60 mJ. Isamba samandla okukhiphayo singama-95 mJ. Amandla aqoqiwe umehluko phakathi kwamandla okufaka nawokukhiphayo, okunikeza 95 - 30 = 65 mJ. Lokhu kuhambisana nokuminyana kwamandla okungu-1.84 J cm-3, okusondelene kakhulu ne-Nd ekhishwe eringini ye-DE. Ukukhiqizwa kabusha kwalo mjikelezo we-Olson kuhlolwe kakhulu (Inothi Lokwengeza 4). Ngokuqhubeka nokwandisa amandla kagesi nezinga lokushisa, sizuze u-4.43 J cm-3 sisebenzisa imijikelezo ye-Olsen ku-PST MLC engu-0.5 mm obukhulu ebangeni lokushisa elingu-750 V (195 kV cm-1) no-175 °C (Inothi Lokwengeza 5). Lokhu kukhulu ngokuphindwe kane kunokusebenza okuhle kakhulu okubikwe ezincwadini zemijikelezo ye-Olson eqondile futhi kutholwe kumafilimu amancane we-Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) (1.06 J cm-3)18 (cm .Supplementary Ithebula 1 lamanani engeziwe ezincwadini). Lokhu kusebenza kufinyelelwe ngenxa yokuvuza okuphansi kakhulu kwamanje kwalawa ma-MLC (<10−7 A ku-750 V no-180 °C, bheka imininingwane kokuthi Supplementary Note 6)—iphuzu elibalulekile elishiwo nguSmith et al.19—ngokuphambene ezintweni ezisetshenziswe ezifundweni zangaphambili17,20. Lokhu kusebenza kufinyelelwe ngenxa yokuvuza okuphansi kakhulu kwamanje kwalawa ma-MLC (<10−7 A ku-750 V no-180 °C, bheka imininingwane kokuthi Supplementary Note 6)—iphuzu elibalulekile elishiwo nguSmith et al.19—ngokuphambene ezintweni ezisetshenziswe ezifundweni zangaphambili17,20. Эти характеристики были достигнуты благодаря очень низкому току утечки этих MLC (<10–7 А при 750 В и 180 °C, см. подробльком) ритический момент, упомянутый Смитом и др. 19 — в отличие от к материалам, использованным в более ранних исследованиях17,20. Lezi zici zifinyelelwe ngenxa yokuvuza okuphansi kakhulu kwamanje kwalawa ma-MLC (<10–7 A at 750 V and 180 °C, bona I-Supplementary Note 6 ukuze uthole imininingwane) - iphuzu elibalulekile elishiwo nguSmith et al. 19 - ngokungafani nezinto ezisetshenziswe ezifundweni zangaphambili17,20.由于這些MLC 的泄漏电流非常低(在750 V 和180 °C 时<10-7 A,请参见补充说明6 的详细伉 的详细伉 的详细伉 的详细伉 人明6 明6 明6)键点——相比之下,已经达到了這种性能到早期研究中使用的材料17,20.由于 這些 mlc 的 泄漏 非常 (在 在 750 V 和 180 ° C 时 <10-7 A , 参见 补充 说明 ) 中 明 ) ) 中 明 ) ) ))人 19 提到 关键 关键 点 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下下 相比之下 相比之下 相比之下相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下究中使用的材料17.20. Поскольку ток утечки этих MLC очень низкий (<10–7 А при 750 В и 180 °C, см. подробности в дополнительном примечании 6) — клтомуты 6 др. 19 - для сравнения, были достигнуты эти характеристики. Njengoba ukuvuza kwamanje kwalawa ma-MLC kuphansi kakhulu (<10–7 A ku-750 V no-180 °C, bona I-Supplementary Note 6 ukuze uthole imininingwane) – iphuzu elibalulekile elishiwo nguSmith et al. 19 - uma kuqhathaniswa, le midlalo ifinyelelwe.kuya ezintweni ezisetshenziswe ezifundweni zangaphambili 17,20.
Izimo ezifanayo (600 V, 20-90 ° C) zisebenza kumjikelezo we-Stirling (Inothi elingeziwe 7). Njengoba bekulindelekile emiphumeleni yomjikelezo we-DE, isivuno sasingu-41.0 mJ. Esinye sezici ezigqama kakhulu zemijikelezo ye-Stirling amandla abo okukhulisa amandla kagesi okuqala ngomphumela we-thermoelectric. Sibone ukuzuza kwamandla kagesi afinyelela ku-39 (kusuka ku-voltage yokuqala ye-15 V kuya ku-voltage yokugcina efika ku-590 V, bheka i-Supplementary Fig. 7.2).
Esinye isici esihlukanisayo salawa ma-MLC ukuthi ayizinto ezinkulu kakhulu ezinkulu ngokwanele ukuqoqa amandla ebangeni le-joule. Ngakho-ke, sakhe umshini wokuvuna we-prototype (HARV1) sisebenzisa i-28 MLC PST 1 mm ubukhulu, silandela umklamo wepuleti ofanayo ofanayo ochazwe ngu-Torello et al.14, ku-matrix engu-7×4 njengoba kuboniswe ku-Fig. Uketshezi lwe-dielectric oluthwala ukushisa i-manifold isuswa yiphampu ye-peristaltic phakathi kwamadamu amabili lapho izinga lokushisa loketshezi ligcinwa lingashintshile (indlela). Qoqa kufika ku-3.1 J usebenzisa umjikelezo we-Olson ochazwe ku-fig. 2a, izifunda ezishisayo ku-10°C no-125°C kanye nezifunda ze-isofield ku-0 no-750 V (195 kV cm-1). Lokhu kuhambisana nokuminyana kwamandla okungu-3.14 J cm-3. Ukusebenzisa lokhu kuhlanganisa, izilinganiso zithathwe ngaphansi kwezimo ezihlukahlukene (Fig. 2b). Qaphela ukuthi i-1.8 J itholwe phezu kwebanga lokushisa elingu-80 °C kanye nogesi ongu-600 V (155 kV cm-1). Lokhu kuvumelana kahle ne-65 mJ eshiwo ngaphambili ye-PST MLC engu-1 mm obukhulu ngaphansi kwezimo ezifanayo (28 × 65 = 1820 mJ).
a, Ukusethwa kokuhlola kwe-HARV1 prototype ehlanganisiwe esekelwe ku-28 MLC PSTs 1 mm ubukhulu (imigqa emi-4 × amakholomu angu-7) egijima emijikelezweni ye-Olson. Esinyathelweni ngasinye kwezine zomjikelezo, izinga lokushisa kanye ne-voltage kunikezwa ku-prototype. Ikhompyutha ishayela iphampu ye-peristaltic ezungeza uketshezi lwe-dielectric phakathi kwamadamu abandayo nashisayo, ama-valve amabili, kanye nomthombo wamandla. Ikhompuyutha futhi isebenzisa ama-thermocouples ukuqoqa idatha ku-voltage kanye namanje okunikezwa ku-prototype kanye nezinga lokushisa lenhlanganisela kusuka kumandla kagesi. b, Amandla (umbala) aqoqwe yisibonelo sethu se-4×7 MLC uma kuqhathaniswa nebanga lokushisa (X-axis) kanye ne-voltage (Y-axis) ekuhlolweni okuhlukile.
Inguqulo enkulu yesivuni (HARV2) enobukhulu obungu-60 PST MLC 1 mm kanye nobukhulu obungu-160 PST MLC 0.5 mm (41.7 g i-pyroelectric material esebenzayo) inikeze u-11.2 J (Inothi Lokwengeza 8). Ngo-1984, u-Olsen wenza isivuni samandla esisekelwe ku-317 g wenhlanganisela ye-tin-doped Pb(Zr,Ti)O3 ekwazi ukukhiqiza u-6.23 J kagesi ezingeni lokushisa elingaba ngu-150 °C (ref. 21). Kule nhlanganisela, leli ukuphela kwelinye inani elitholakalayo ebangeni le-joule. Ithole ngaphezudlwana kwesigamu senani esilizuzile futhi icishe iphindwe kasikhombisa kunekhwalithi. Lokhu kusho ukuthi ukuminyana kwamandla e-HARV2 kuphindwe izikhathi eziyi-13.
Isikhathi somjikelezo we-HARV1 amasekhondi angama-57. Lokhu kukhiqize amandla angu-54 mW anemigqa emi-4 yamakholomu angu-7 wesethi ye-MLC engu-1 mm obukhulu. Ukuze siqhubekele phambili, sakhe inhlanganisela yesithathu (i-HARV3) ene-PST MLC ewugqinsi engu-0.5mm kanye nokusetha okufanayo kokuthi i-HARV1 ne-HARV2 (Isaziso Esingeziwe 9). Silinganise isikhathi sokushisa samasekhondi angu-12.5. Lokhu kuhambisana nesikhathi somjikelezo we-25 s (I-Supplementary Fig. 9). Amandla aqoqiwe (47 mJ) anikeza amandla kagesi angu-1.95 mW nge-MLC ngayinye, okubuye kusivumele ukuthi sicabange ukuthi i-HARV2 ikhiqiza u-0.55 W (cishe u-1.95 mW × 280 PST MLC 0.5 mm ubukhulu). Ngaphezu kwalokho, silingise ukudluliswa kokushisa sisebenzisa i-Finite Element Simulation (i-COMSOL, i-Supplementary Note 10 kanye namaThebula Engeziwe 2–4) ahambisana nokuhlolwa kwe-HARV1. Ukumodela kwesici esiphelile kwenze kwaba nokwenzeka ukubikezela amanani wamandla cishe ukuhleleka kobukhulu obuphezulu (430 mW) enani elifanayo lamakholomu e-PST ngokunciphisa i-MLC ibe ngu-0.2 mm, kusetshenziswa amanzi njengesipholile, nokubuyisela i-matrix emigqeni engu-7. . × amakholomu angu-4 (ngaphezu kwalokho, kwakukhona i-960 mW lapho ithangi liseduze nenhlanganisela, I-Supplementary Fig. 10b).
Ukukhombisa ukuba wusizo kwalesi siqoqi, umjikelezo we-Stirling wasetshenziswa kumbonisi ozimela yedwa ohlanganisa kuphela ama-PST MLC amabili awugqinsi angu-0.5 mm njengabaqoqi bokushisa, i-high voltage switch, i-voltage ephansi ene-capacitor yokugcina, i-converter ye-DC/DC. , i-microcontroller enamandla aphansi, ama-thermocouples amabili kanye ne-boost converter (Inothi Lokwengeza 11). Isekhethi idinga ukuthi i-capacitor yokugcina ishajelwe ekuqaleni ku-9V bese isebenza ngokuzenzakalelayo kuyilapho izinga lokushisa lama-MLC amabili lisukela ku- -5°C kuya ku-85°C, lapha emijikelezweni engu-160 s (imijikelezo eminingana iboniswa ku-Supplementary Note 11) . Ngokumangalisayo, ama-MLC amabili anesisindo esingu-0.3g kuphela angakwazi ukulawula ngokuzenzakalelayo lolu hlelo olukhulu. Esinye isici esithokozisayo ukuthi isiguquli se-voltage ephansi siyakwazi ukuguqula i-400V iye ku-10-15V ngokusebenza kahle okungu-79% (I-Supplementary Note 11 kanye Nomfanekiso Owengeziwe 11.3).
Ekugcineni, sihlole ukusebenza kahle kwala mamojula we-MLC ekuguquleni amandla ashisayo abe amandla kagesi. Isici sekhwalithi esingu-η sokusebenza kahle sichazwa njengesilinganiso sokuminyana kwamandla kagesi aqoqiwe Nd kuya kubukhulu bokushisa okunikeziwe i-Qin (inothi Lokwengeza 12):
Izibalo 3a,b zibonisa ukusebenza kahle η nokusebenza ngokulinganayo ηr komjikelezo we-Olsen, ngokulandelanayo, njengomsebenzi webanga lokushisa elingu-0.5 mm obukhulu be-PST MLC. Womabili amasethi edatha anikezwe inkambu kagesi engu-195 kV cm-1. Ukusebenza kahle \(\lokhu\) kufinyelela ku-1.43%, okulingana no-18% we-ηr. Nokho, ebangeni lokushisa lika-10 K ukusuka ku-25 °C kuya ku-35 °C, i-ηr ifinyelela kumanani kufika ku-40% (ijika eliluhlaza okwesibhakabhaka ku-Fig. 3b). Lokhu kuyinani eliphindwe kabili elaziwayo lezinto ze-NLP ezirekhodwe kumafilimu e-PMN-PT (ηr = 19%) ebangeni lokushisa elingu-10 K no-300 kV cm-1 (Ref. 18). Amazinga okushisa angaphansi kuka-10 K awazange acatshangelwe ngenxa yokuthi i-thermal hysteresis ye-PST MLC iphakathi kuka-5 no-8 K. Ukuqashelwa komthelela omuhle woshintsho lwesigaba ekusebenzeni kahle kubalulekile. Eqinisweni, amanani alungile ka-η kanye no-ηr cishe wonke atholakala ekushiseni kokuqala kuka-Ti = 25°C kumakhiwane. 3a,b. Lokhu kungenxa yenguquko yesigaba esiseduze lapho ingekho inkambu esetshenziswayo futhi izinga lokushisa le-Curie TC licishe libe ngu-20 °C kulawa ma-MLC (Inothi elingeziwe 13).
a,b, ukusebenza kahle η kanye nokusebenza ngokulinganayo komjikelezo we-Olson (a)\({\eta }_{{\rm{r}}}=\eta /{\eta}_{{\rm{Carnot} } ngomkhawulo kagesi ngenkambu engu-195 kV cm-1 namazinga okushisa okuqala ahlukene Ti, }}\,\)(b) ye-MPC PST engu-0.5 mm ubukhulu, kuye ngesikhawu sezinga lokushisa esingu-ΔTspan.
Ukuqaphela kwakamuva kunemithelela emibili ebalulekile: (1) noma yikuphi ukugibela amabhayisikili okuphumelelayo kufanele kuqale emazingeni okushisa angaphezu kwe-TC ukuze kwenzeke uguquko lwesigaba esibangelwa umkhakha (kusuka ku-paraelectric ukuya ku-ferroelectric); (2) lezi zinto zokusebenza zisebenza kahle kakhulu ngezikhathi zokugijima eduze ne-TC. Nakuba ukusebenza kwesilinganiso esikhulu kuboniswa ekuhloleni kwethu, izinga lokushisa elilinganiselwe alisivumeli ukuthi sifinyelele ukusebenza kahle okukhulu ngenxa yomkhawulo we-Carnot (\(\Delta T/T\)). Kodwa-ke, ukusebenza kahle okuhle kakhulu okukhonjiswe yilawa ma-PST MLCs kufakazela u-Olsen lapho ethi “injini ekahle yesigaba sama-20 evuselela amandla e-thermoelectric esebenza emazingeni okushisa aphakathi kuka-50 °C no-250 °C ingaba nokusebenza kahle okungu-30%”17. Ukuze ufinyelele lawa magugu futhi uhlole umqondo, kungaba usizo ukusebenzisa ama-PST anama-TC ahlukene, njengoba kufundwe uShebanov noBorman. Babonise ukuthi i-TC ku-PST ingahluka kusuka ku-3°C (Sb doping) kuya ku-33°C (Ti doping) 22. Ngakho-ke, silinganisa ukuthi isizukulwane esilandelayo se-pyroelectric regenerators ngokusekelwe kuma-PST MLC ane-doped noma ezinye izinto ezinoshintsho oluqinile lwesigaba sokuqala se-oda zingaqhudelana nezivuni zikagesi ezihamba phambili.
Kulolu cwaningo, siphenye ama-MLC enziwe nge-PST. Lawa madivayisi aqukethe uchungechunge lwama-electrode e-Pt ne-PST, lapho ama-capacitor amaningana axhunywa khona ngokuhambisana. I-PST ikhethiwe ngoba iyinto enhle kakhulu ye-EC ngakho-ke iyinto engaba yinhle kakhulu ye-NLP. Ibonisa ukuguqulwa kwesigaba sokuqala esibukhali se-ferroelectric-paraelectric esizungeze i-20 °C, okubonisa ukuthi izinguquko zayo ze-entropy zifana nalezo eziboniswe ku-Fig. 1. Ama-MLC afanayo achazwe ngokugcwele kumadivayisi we-EC13,14. Kulolu cwaningo, sisebenzise 10.4 × 7.2 × 1 mm³ kanye no-10.4 × 7.2 × 0.5 mm³ MLCs. Ama-MLC anogqinsi oluyi-1 mm kanye no-0.5 mm enziwe kusukela ezingqimbeni ezingu-19 nezingu-9 ze-PST ezinogqinsi luka-38.6 µm, ngokulandelanayo. Kuzo zombili izimo, isendlalelo sangaphakathi se-PST sibekwe phakathi kwama-electrode eplatinamu angu-2.05 µm. Idizayini yalawa ma-MLC ithatha ukuthi u-55% wama-PST ayasebenza, ahambisana nengxenye ephakathi kwama-electrode (Inothi Lokwengeza 1). Indawo ye-electrode esebenzayo yayingu-48.7 mm2 (Ithebula Lokwengeza 5). I-MLC PST yalungiselelwa ukusabela kwesigaba esiqinile nendlela yokusakaza. Imininingwane yenqubo yokulungiselela ichazwe esihlokweni esedlule14. Omunye umehluko phakathi kwe-PST MLC kanye nesihloko sangaphambilini ukuhleleka kwamasayithi e-B, okuthinta kakhulu ukusebenza kwe-EC ku-PST. Ukuhleleka kwezindawo ze-B ze-PST MLC ngu-0.75 (Inothi Lokwengeza 2) elitholwe ngokufaka i-sintering ku-1400°C kulandelwa amakhulu amahora ubude be-anneal ku-1000°C. Ukuze uthole ulwazi olwengeziwe nge-PST MLC, bheka Amanothi Ezengezo 1-3 kanye Nethebula Lokwengeza 5.
Umqondo oyinhloko walolu cwaningo usekelwe kumjikelezo we-Olson (Fig. 1). Ngomjikelezo onjalo, sidinga indawo yokugcina amanzi ashisayo nabandayo kanye nogesi okwazi ukuqapha nokulawula amandla kagesi kanye namanje kumamojula ahlukahlukene e-MLC. Le mijikelezo eqondile yasebenzisa ukucushwa okubili okuhlukene, okungukuthi (1) amamojula e-Linkam okufudumeza nokupholisa i-MLC eyodwa exhunywe kumthombo wamandla we-Keithley 2410, kanye (2) nama-prototypes amathathu (HARV1, HARV2 kanye ne-HARV3) ngokuhambisana nomthombo wamandla ofanayo. Esimweni sokugcina, uketshezi lwe-dielectric (amafutha e-silicone ane-viscosity ye-5 cP ku-25 ° C, ethengwe ku-Sigma Aldrich) yasetshenziselwa ukushintshanisa ukushisa phakathi kwamachibi amabili (okushisa nokubanda) kanye ne-MLC. I-thermal reservoir iqukethe isitsha sengilazi esigcwele uketshezi lwe-dielectric futhi sibekwe phezu kwepuleti elishisayo. Isitoreji esibandayo siqukethe ukugeza kwamanzi okunamashubhu awuketshezi aqukethe uketshezi lwe-dielectric esitsheni esikhulu sepulasitiki esigcwele amanzi neqhwa. Amavalvu amabili okuncinza anezindlela ezintathu (athengwe ku-Bio-Chem Fluidics) abekwe ekugcineni kwenhlanganisela ukuze kushintshwe kahle uketshezi lusuka kwelinye ichibi luye kwelinye (Umfanekiso 2a). Ukuqinisekisa ukulingana okushisayo phakathi kwephakheji ye-PST-MLC nesipholile, isikhathi somjikelezo sanwetshwa kuze kube yilapho i-thermocouples yokungena nokuphuma (eseduze ngangokunokwenzeka nephakheji ye-PST-MLC) ibonise izinga lokushisa elifanayo. Umbhalo we-Python ulawula futhi uvumelanise zonke izisetshenziswa (amamitha omthombo, amaphampu, ama-valve, nama-thermocouples) ukuze kuqhutshekwe umjikelezo olungile we-Olson, okungukuthi iluphu epholile iqala ukuhamba ngebhayisikili ngesitaki se-PST ngemva kokushajwa imitha yomthombo ukuze kushise lapho kudingekile. I-voltage esetshenzisiwe yomjikelezo we-Olson onikeziwe.
Kungenjalo, siziqinisekisile lezi zilinganiso eziqondile zamandla aqoqiwe ngezindlela ezingaqondile. Lezi zindlela ezingaqondile zisekelwe ekuthuthweni kukagesi (D) - inkambu kagesi (E) izihibe zensimu eziqoqwe emazingeni okushisa ahlukene, futhi ngokubala indawo phakathi kwezihibe ezimbili ze-DE, umuntu angakwazi ukulinganisa ngokunembile ukuthi angakanani amandla angaqoqwa, njengoba kuboniswe esithombeni. . emfanekisweni 2. .1b. Lezi zihibe ze-DE nazo ziqoqwa kusetshenziswa amamitha omthombo we-Keithley.
Ama-PST MLC angamashumi amabili nesishiyagalombili angu-1 mm awugqinsi ahlanganiswe ngomugqa ongu-4, isakhiwo sepuleti elihambisanayo lekholomu engu-7 ngokuvumelana nomklamo ochazwe kusithenjwa. 14. Igebe loketshezi phakathi kwemigqa ye-PST-MLC ngu-0.75mm. Lokhu kufezwa ngokungeza imicu yetheyiphu enezinhlangothi ezimbili njengama-spacers oketshezi emaphethelweni e-PST MLC. I-PST MLC ixhunywe ngogesi ngokuhambisana nebhuloho le-epoxy elisiliva elixhumene nomkhondo we-electrode. Ngemva kwalokho, izintambo zazinanyathiselwe nge-silver epoxy resin ohlangothini ngalunye lwamatheminali ama-electrode ukuze zixhunywe kugesi. Ekugcineni, faka sonke isakhiwo epayipini le-polyolefin. Lesi sakamuva sinamathiselwe eshubhuni eliwuketshezi ukuze kuqinisekiswe ukuvaleka okufanele. Ekugcineni, ama-thermocouples ohlobo lwe-K angu-0.25 mm awugqinsi akhelwe ekugcineni ngakunye kwesakhiwo se-PST-MLC ukuze kuqashwe izinga lokushisa le-inlet ne-outlet liquid. Ukuze wenze lokhu, i-hose kufanele ifakwe kuqala. Ngemva kokufaka i-thermocouple, sebenzisa i-adhesive efanayo nangaphambili phakathi kwepayipi le-thermocouple nocingo ukuze ubuyisele uphawu.
Kwakhiwe ama-prototypes ahlukene ayisishiyagalombili, amane kuwo abe nama-MLC PST angu-40 0.5 mm awugqinsi asakazwa njengamapuleti ahambisanayo anamakholomu angu-5 nemigqa engu-8, kanti amane asele ayenama-MLC PST angu-15 1 mm awugqinsi ngalinye. kukholomu engu-3 × isakhiwo sepuleti elihambisanayo elinemigqa emi-5. Isamba senani lama-PST MLC asetshenzisiwe lalingu-220 (160 0.5 mm ubukhulu kanye no-60 PST MLC 1 mm ubukhulu). Lawa mayunithi amabili amancane siwabiza nge-HARV2_160 kanye ne-HARV2_60. Igebe eliwuketshezi ku-prototype HARV2_160 liqukethe amateyipu amabili anezinhlangothi ezimbili awugqinsi ongu-0.25 mm nocingo oluwugqinsi olungu-0.25 mm phakathi kwawo. Ngomfanekiso we-HARV2_60, siphinde inqubo efanayo, kodwa sisebenzisa intambo ewugqinsi engu-0.38 mm. Ngokulinganisa, i-HARV2_160 kanye ne-HARV2_60 zinamasekhethi awo oketshezi, amaphampu, amavalvu kanye nohlangothi olubandayo (Isaziso Esingeziwe 8). Amayunithi amabili e-HARV2 ahlanganyela isigubhu sokushisa, isiqukathi esingu-3 litre (30 cm x 20 cm x 5 cm) kumapuleti ashisayo amabili anozibuthe abazungezayo. Wonke ama-prototypes angawodwana ayisishiyagalombili axhunywe ngogesi ngokuhambisana. Amayunithi amancane e-HARV2_160 kanye ne-HARV2_60 asebenza ngesikhathi esisodwa kumjikelezo we-Olson okuholela ekuvunweni kwamandla ka-11.2 J.
Beka i-PST MLC engu-0.5mm ewugqinsi epayipini le-polyolefin elinetheyiphu emaceleni amabili kanye nocingo nhlangothi zombili ukuze udale isikhala sokugeleza koketshezi. Ngenxa yobukhulu bayo obuncane, i-prototype yabekwa eduze kwe-valve ye-reservoir eshisayo noma ebandayo, ukunciphisa izikhathi zomjikelezo.
Ku-PST MLC, inkambu kagesi engashintshi isetshenziswa ngokufaka i-voltage eqhubekayo egatsheni lokushisa. Ngenxa yalokho, i-thermal current engalungile ikhiqizwa futhi amandla agcinwe. Ngemva kokushisa i-PST MLC, inkambu iyasuswa (V = 0), futhi amandla agcinwe kuyo abuyiselwa emuva kwikhawunta yomthombo, ehambisana nomnikelo owodwa ngaphezulu wamandla aqoqiwe. Ekugcineni, nge-voltage engu-V = 0 esetshenzisiwe, ama-MLC PSTs apholiswa ekushiseni kwawo kokuqala ukuze umjikelezo uqalise futhi. Kulesi sigaba, amandla awaqoqwa. Siqhube umjikelezo we-Olsen sisebenzisa i-Keithley 2410 SourceMeter, sishaja i-PST MLC kusuka kumthombo wamandla kagesi futhi sibeka okufanayo kwamanje kunani elifanele ukuze amaphuzu anele aqoqwe phakathi nesigaba sokushaja ukuze kubalwe amandla athembekile.
Kumijikelezo ye-Stirling, ama-PST MLCs akhokhiswe ngemodi yomthombo wamandla kagesi enanini lokuqala lendawo kagesi (i-voltage yokuqala engu-Vi > 0), amandla okuthobela afiswayo ukuze isinyathelo sokushaja sithathe isekhondi elingu-1 (futhi amaphuzu anele aqoqwa ukuze kubalwe okuthembekile amandla) kanye nezinga lokushisa elibandayo. Kumijikelezo ye-Stirling, ama-PST MLCs akhokhiswe ngemodi yomthombo wamandla kagesi enanini lokuqala lendawo kagesi (i-voltage yokuqala engu-Vi > 0), amandla okuthobela afiswayo ukuze isinyathelo sokushaja sithathe isekhondi elingu-1 (futhi amaphuzu anele aqoqwa ukuze kubalwe okuthembekile amandla) kanye nezinga lokushisa elibandayo. В циклах Стирлинга PST MLC заряжались в режиме источника напряжения при начальном значении электрического поля (начальное напряжения ), може напряжения что этап зарядки занимает около 1 с (и набирается достаточное количество точек для надежного расчета энергия) и холодная температура. Kumijikelezo ye-Stirling PST MLC, akhokhiswe kumodi yomthombo wamandla kagesi enanini lokuqala lenkambu kagesi (i-voltage yokuqala engu-Vi > 0), isivuno esifunekayo samanje, ukuze isigaba sokushaja sithathe cishe isekhondi elingu-1 (kanye nenombolo eyanele). amaphuzu aqoqwe ukuze kube nezibalo zamandla ezinokwethenjelwa) kanye nezinga lokushisa elibandayo.在斯特林循环中,PST MLC 在电压源模大式下以初始电场值(初始电压Vi > 0)充电,所充电,需要1 秒(并且收集了足够的点以可靠地计算能量)和低温. Emjikelezweni omkhulu, i-PST MLC ikhokhiswa ngenani lensimu kagesi yokuqala (i-voltage yokuqala engu-Vi > 0) kumodi yomthombo wamandla kagesi, ukuze amandla amanje okuthobela athatha cishe isekhondi elingu-1 esinyathelweni sokushaja (futhi siqoqe amaphuzu anele ukubala ngokuthembekile (amandla) kanye nezinga lokushisa eliphansi. В цикле Стирлинга PST MLC заряжается в режиме источника напряжения с начальным значением электрического поля (начальное напряжения) прияжение в пряжения ков, что этап зарядки занимает около 1 с (и набирается достаточное количество точек, чтобы надежно рассчитать энергию) и низкиету темпера . Emjikelezweni we-Stirling, i-PST MLC ishajwa kumodi yomthombo kagesi enenani lokuqala lenkambu kagesi (i-voltage yokuqala engu-Vi > 0), okwamanje okuhambisanayo okudingekayo njengokuthi isigaba sokushaja sithatha cishe isekhondi elingu-1 (kanye nenombolo eyanele). amaphuzu aqoqwa ukuze kubalwe ngokuthembekile amandla) namazinga okushisa aphansi .Ngaphambi kokuthi i-PST MLC ishise, vula isekethe ngokusebenzisa amandla afanayo we-I = 0 mA (ubuncane bamanje obuhambisanayo obungasingathwa umthombo wethu wokulinganisa ngu-10 nA). Ngenxa yalokho, inkokhiso isala ku-PST ye-MJK, futhi amandla ogesi ayakhuphuka njengoba isampula lishisa. Awekho amandla aqoqwa engalweni BC ngoba I = 0 mA. Ngemva kokufinyelela izinga lokushisa eliphezulu, i-voltage ku-MLT FT iyanda (kwezinye izimo izikhathi ezingaphezu kuka-30, bheka umkhiwane owengeziwe. 7.2), i-MLK FT ikhishwa (V = 0), futhi amandla kagesi agcinwa kuwo okufanayo. njengoba kuyicala lokuqala. Ukuxhumana okufanayo kwamanje kubuyiselwa kumthombo wamamitha. Ngenxa yokuzuza kwamandla kagesi, amandla agciniwe ekushiseni okuphezulu aphezulu kunalawo anikezwe ekuqaleni komjikelezo. Ngenxa yalokho, amandla atholakala ngokuguqula ukushisa kube ugesi.
Sisebenzise i-Keithley 2410 SourceMeter ukuqapha amandla kagesi kanye namanje asetshenziswa ku-PST MLC. Amandla ahambisanayo abalwa ngokuhlanganisa umkhiqizo we-voltage kanye namanje ofundwa imitha yomthombo ka-Keithley, \ (E = {\int }_{0}^{\tau {I}_({\rm {meas))}\ kwesokunxele(t\ kwesokudla){V}_{{\rm{meas}}}(t)\), lapho u-τ eyinkathi yenkathi. Ejikeni lethu lamandla, amanani amahle wamandla asho amandla okufanele siwanikeze i-MLC PST, futhi amanani amabi asho amandla esiwakhipha kuwo futhi ngenxa yalokho amandla atholiwe. Amandla ahlobene omjikelezo weqoqo onikeziwe anqunywa ngokuhlukanisa amandla aqoqiwe ngesikhathi esingu-τ wawo wonke umjikelezo.
Yonke idatha yethulwa embhalweni omkhulu noma olwazini olwengeziwe. Izincwadi nezicelo zezinto zokwakha kufanele ziqondiswe emthonjeni wedatha ye-AT noma ye-ED enikezwe lesi sihloko.
I-Ando Junior, OH, Maran, ALO & Henao, NC Ukubuyekezwa kokuthuthukiswa kanye nokusetshenziswa kwama-microgenerator we-thermoelectric ukuze kuvunwe amandla. I-Ando Junior, OH, Maran, ALO & Henao, NC Ukubuyekezwa kokuthuthukiswa kanye nokusetshenziswa kwama-microgenerator we-thermoelectric ukuze kuvunwe amandla.I-Ando Junior, i-Ohio, i-Maran, i-ALO kanye ne-Henao, i-NC Uhlolojikelele lokuthuthukiswa nokusebenzisa ama-microgenerator amancane we-thermoelectric ukuze kuvunwe amandla. U-Ando Junior, OH, Maran, ALO & Henao, NC 回顾用于能量收集的热电微型发电机的开发和应用. U-Ando Junior, OH, Maran, ALO & Henao, NCI-Ando Junior, i-Ohio, i-Maran, i-ALO, ne-Henao, NC icubungula ukuthuthukiswa nokusebenzisa ama-microgenerator amancane we-thermoelectric ukuze kuvunwe amandla.qalisa kabusha. ukusekela. Amandla Rev. 91, 376–393 (2018).
I-Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Izinto ze-Photovoltaic: ukusebenza kahle kwamanje kanye nezinselele zesikhathi esizayo. I-Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Izinto ze-Photovoltaic: ukusebenza kahle kwamanje kanye nezinselele zesikhathi esizayo.Polman, A., Knight, M., Garnett, EK, Ehrler, B. noSinke, VK Izinto zokwakha ze-Photovoltaic: ukusebenza kwamanje nezinselele zesikhathi esizayo. Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC 光伏材料:目前的效率和未來的挑战. I-Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Izinto ze-Solar: ukusebenza kahle kwamanje kanye nezinselele zesikhathi esizayo.Polman, A., Knight, M., Garnett, EK, Ehrler, B. noSinke, VK Izinto zokwakha ze-Photovoltaic: ukusebenza kwamanje nezinselele zesikhathi esizayo.Isayensi 352, aad4424 (2016).
Ingoma, K., Zhao, R., Wang, ZL & Yang, Y. Umphumela ohlanganisiwe we-pyro-piezoelectric wezinga lokushisa kanye nomuzwa wokucindezela ozinika amandla. Ingoma, K., Zhao, R., Wang, ZL & Yang, Y. Conjunct pyro-piezoelectric effect for self-powered self-powered self-theasure kanyekanye nomuzwa wokucindezela.Ingoma K., Zhao R., Wang ZL kanye no-Yan Yu. Umphumela ohlanganisiwe we-pyropiezoelectric wokulinganisa okuzimele kanyekanye kwezinga lokushisa nokucindezela. Ingoma, K., Zhao, R., Wang, ZL & Yang, Y. 用于自供电同时温度和压力传感的联合热压电效度. Ingoma, K., Zhao, R., Wang, ZL & Yang, Y. Ngokuzinika amandla ngesikhathi esifanayo nezinga lokushisa nokucindezela.Ingoma K., Zhao R., Wang ZL kanye no-Yan Yu. Umphumela ohlanganisiwe we-thermopiezoelectric wokulinganisa okuzimele kanyekanye kwezinga lokushisa nokucindezela.Phambili. alma mater 31, 1902831 (2019).
Sebald, G., Pruvost, S. & Guyomar, D. Ukuvuna amandla okusekelwe kuma-Ericsson pyroelectric cycles ku-relaxor ferroelectric ceramic. Sebald, G., Pruvost, S. & Guyomar, D. Ukuvuna amandla okusekelwe kuma-Ericsson pyroelectric cycles ku-relaxor ferroelectric ceramic.U-Sebald G., u-Prouvost S. no-Guyomar D. Ukuvunwa kwamandla okusekelwe emijikelezweni ye-pyroelectric Ericsson kuma-relaxer ferroelectric ceramics.U-Sebald G., u-Prouvost S. no-Guyomar D. Ukuvunwa kwamandla kumaceramics e-relaxor ferroelectric okusekelwe ku-Ericsson pyroelectric cycling. I-Smart alma mater. isakhiwo. 17, 15012 (2007).
I-Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal interconversion yamandla. I-Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal interconversion yamandla. I-Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Электрокалорические и пироэлектрические материалы следующего поколения для взаиольные для взаильный рмической энергии. I-Alpay, i-SP, i-Mantese, i-J., i-Trolier-Mckinstry, i-S., i-Zhang, i-Q. & i-Whatmore, i-RW Isizukulwane esilandelayo sezinto ezisetshenziswayo ze-electrocaloric kanye ne-pyroelectric ye-solid state electrothermal interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW 用于固态电热能相互转换的下一代电热和热释电材斖。 Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW I-Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Электрокалорические и пироэлектрические материалы следующего поколения для взаиольные для взаильный рмической энергии. I-Alpay, i-SP, i-Mantese, i-J., i-Trolier-Mckinstry, i-S., i-Zhang, i-Q. & i-Whatmore, i-RW Isizukulwane esilandelayo sezinto ezisetshenziswayo ze-electrocaloric kanye ne-pyroelectric ye-solid state electrothermal interconversion.Inkunzi yeNkunzi. 39, 1099–1109 (2014).
U-Zhang, K., Wang, Y., Wang, ZL & Yang, Y. Okujwayelekile kanye nesibalo sokufaneleka sokulinganisa ukusebenza kwama-pyroelectric nanogenerator. U-Zhang, K., Wang, Y., Wang, ZL & Yang, Y. Okujwayelekile kanye nesibalo sokufaneleka sokulinganisa ukusebenza kwama-pyroelectric nanogenerator.U-Zhang, K., Wang, Y., Wang, ZL kanye no-Yang, Yu. Isikolo esijwayelekile nekhwalithi sokulinganisa ukusebenza kwama-pyroelectric nanogenerators. Zhang, K., Wang, Y., Wang, ZL & Yang, Y. 用于量化热释电纳米发电机性能的标准和品质因数. Zhang, K., Wang, Y., Wang, ZL & Yang, Y.U-Zhang, K., Wang, Y., Wang, ZL kanye no-Yang, Yu. Imibandela kanye nezinyathelo zokusebenza zokulinganisa ukusebenza kwe-pyroelectric nanogenerator.I-Nano Energy 55, 534–540 (2019).
I-Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND Imijikelezo yokupholisa ye-Electrocaloric ku-lead scandium tantalate ngokuvuselelwa kwangempela ngokuhlukahluka kwensimu. I-Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND Imijikelezo yokupholisa ye-Electrocaloric ku-lead scandium tantalate ngokuvuselelwa kwangempela ngokuhlukahluka kwensimu.I-Crossley, S., Nair, B., Watmore, RW, Moya, X. kanye ne-Mathur, ND Imijikelezo yokupholisa ye-Electrocaloric ku-lead-scandium tantalate enokuvuselelwa kwangempela ngokuguqulwa kwenkambu. Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND 钽酸钪铅的电热冷却循环,通过场变化实现真正的再生。 Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND. Tantalum酸钪钪钪钪钪钪钪电求的电池水水水水气水在电影在线电影.I-Crossley, S., Nair, B., Watmore, RW, Moya, X. kanye ne-Mathur, ND Umjikelezo wokupholisa we-electrothermal we-scandium-lead tantalate yokwenziwa kabusha kwangempela ngokuguqulwa kwenkambu.i-physics Rev. X 9, 41002 (2019).
Moya, X., Kar-Narayan, S. & Mathur, ND Caloric materials eduze noshintsho lwesigaba se-ferroic. Moya, X., Kar-Narayan, S. & Mathur, ND Caloric materials eduze noshintsho lwesigaba se-ferroic.UMoya, X., Kar-Narayan, S. no-Mathur, ND Izinto zekhalori eduze noshintsho lwesigaba se-ferroid. Moya, X., Kar-Narayan, S. & Mathur, ND 铁质相变附近的热量材料. Moya, X., Kar-Narayan, S. & Mathur, ND Thermal materials eduze ne-ferrous metallurgy.UMoya, X., Kar-Narayan, S. no-Mathur, ND Izinto ezisetshenziswayo ezishisayo eduze noshintsho lwesigaba sensimbi.Nat. alma mater 13, 439–450 (2014).
Moya, X. & Mathur, ND Caloric materials zokupholisa nokushisisa. Moya, X. & Mathur, ND Caloric materials zokupholisa nokushisisa.UMoya, X. no-Mathur, ND Izinto ezishisayo zokupholisa nokushisisa. UMoya, X. & Mathur, ND 用于冷却和加热的热量材料. Moya, X. & Mathur, ND Thermal materials zokupholisa nokushisisa.UMoya X. kanye ne-Mathur ND Thermal materials zokupholisa nokushisisa.Isayensi 370, 797–803 (2020).
I-Torelló, A. & Defay, E. Electrocaloric coolers: isibuyekezo. I-Torelló, A. & Defay, E. Electrocaloric coolers: isibuyekezo.Torello, A. and Defay, E. Electrocaloric chillers: isibuyekezo. I-Torelló, A. & Defay, E. 电热冷却器:评论。 I-Torelló, A. & Defay, E. 电热冷却器:评论。I-Torello, A. kanye ne-Defay, E. Electrothermal coolers: isibuyekezo.Okuthuthukile. electronic. u-alma mater. 8. 2101031 (2022).
Nuchokgwe, Y. et al. Ukusebenza kahle kwamandla okukhulu kwezinto ze-electrocaloric ku-scandium-scandium-lead e-ode kakhulu. Ukuxhumana kuzwelonke. 12, 3298 (2021).
Nair, B. et al. Umthelela we-electrothermal we-oxide multilayer capacitor mkhulu ngebanga lokushisa elibanzi. Imvelo 575, 468–472 (2019).
Torello, A. et al. Ibanga lokushisa elikhulu kuma-electrothermal regenerator. Isayensi 370, 125–129 (2020).
Wang, Y. et al. Ukusebenza okuphezulu okuqinile kwesistimu yokupholisa ye-electrothermal. Isayensi 370, 129–133 (2020).
Meng, Y. et al. Idivayisi yokupholisa ye-electrothermal ye-Cascade yokukhuphuka okukhulu kwezinga lokushisa. Amandla Kazwelonke 5, 996–1002 (2020).
I-Olsen, i-RB & Brown, DD Ukusebenza kahle okuphezulu kokuguqulwa okuqondile kokushisa kuzilinganiso ze-pyroelectric ezihlobene namandla kagesi. I-Olsen, i-RB & Brown, DD Ukuguqulwa okuqondile okusebenzayo okuphezulu kokushisa kuzilinganiso ze-pyroelectric ezihlobene namandla kagesi.U-Olsen, u-RB no-Brown, DD Ukuguqulwa okuqondile okuphumelelayo okuphezulu kakhulu kokushisa kube amandla kagesi ahlobene nezilinganiso ze-pyroelectric. Olsen, RB & Brown, DD 高效直接将热量转换為电能相关的热释电测量. Olsen, RB & Brown, DDU-Olsen, u-RB no-Brown, DD Ukuguqulwa okuqondile okuqondile kokushisa kugesi okuhlobene nezilinganiso ze-pyroelectric.I-Ferroelectrics 40, 17–27 (1982).
Pandya, S. et al. Ukuminyana kwamandla namandla kumafilimu azacile e-ferroelectric. I-alma mater kazwelonke. https://doi.org/10.1038/s41563-018-0059-8 (2018).
USmith, AN & Hanrahan, BM Cascaded pyroelectric conversion: kuthuthukisa ukuguqulwa kwesigaba se-ferroelectric nokulahlekelwa kukagesi. USmith, AN & Hanrahan, BM Cascaded pyroelectric conversion: kuthuthukisa ukuguqulwa kwesigaba se-ferroelectric nokulahlekelwa kukagesi.U-Smith, AN no-Hanrahan, ukuguqulwa kwe-BM Cascaded pyroelectric: ukuguqulwa kwesigaba se-ferroelectric kanye nokwenza ngcono ukulahleka kukagesi. USmith, AN & Hanrahan, BM 级联热释电转换:优化铁电相变和电损耗。 Smith, AN & Hanrahan, BMUSmith, AN kanye noHanrahan, BM Cascaded pyroelectric conversion: ukulungiselelwa kokushintshwa kwesigaba se-ferroelectric nokulahlekelwa kukagesi.J. Isicelo. i-physics. 128, 24103 (2020).
Hoch, SR Ukusetshenziswa kwezinto ze-ferroelectric ukuguqula amandla ashisayo abe ngugesi. inqubo. IEEE 51, 838–845 (1963).
Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. Cascaded pyroelectric energy converter. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. Cascaded pyroelectric energy converter.Olsen, RB, Bruno, DA, Briscoe, JM and Dullea, J. Cascade Pyroelectric Power Converter. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. 级联热释电能量转换器. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. 级联热释电能量转换器.Olsen, RB, Bruno, DA, Briscoe, JM and Dullea, J. Iziguquli zamandla e-pyroelectric ezicashile.I-Ferroelectrics 59, 205–219 (1984).
U-Shebanov, L. & Borman, K. Ku-lead-scandium tantalate izixazululo eziqinile ezinomphumela ophezulu we-electrocaloric. U-Shebanov, L. & Borman, K. Ku-lead-scandium tantalate izixazululo eziqinile ezinomphumela ophezulu we-electrocaloric.U-Shebanov L. no-Borman K. Kuzixazululo eziqinile ze-lead-scandium tantalate ezinomphumela ophezulu we-electrocaloric. Shebanov, L. & Borman, K. 关于具有高电热效应的钪铅钪固溶体. Shebanov, L. & Borman, K.U-Shebanov L. no-Borman K. Kuzixazululo eziqinile ze-scandium-lead-scandium ezinomphumela ophezulu we-electrocaloric.I-Ferroelectrics 127, 143–148 (1992).
Sibonga u-N. Furusawa, Y. Inoue, no-K. Honda ngosizo lwabo ekwakheni i-MLC. PL, AT, YN, AA, JL, UP, VK, OB kanye no-ED Sibonga iLuxembourg National Research Foundation (FNR) ngokusekela lo msebenzi nge-CAMELHEAT C17/MS/11703691/Defay, MASSENA PRIDE/15/10935404/Defay- Siebentritt, THERMODIMAT C20/MS/14718071/Defay kanye ne-BRIDGES2021/MS/16282302/CECOHA/Defay.
Umnyango Wokucwaninga Ngezinto Zokusebenza Nobuchwepheshe, Isikhungo Sezobuchwepheshe sase-Luxembourg (LIST), Belvoir, Luxembourg
Isikhathi sokuthumela: Sep-15-2022